SEMANTICS-DRIVEN MIDDLEWARE LAYER FOR BUILDING OPERATION ANALYSIS IN LARGE-SCALE ENVIRONMENTS

Adam Kučera, Tomáš Pitner

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS MASARYK UNIVERSITY
Outline

• Introduction
 • Facility management
 • Information systems in facility management

• Motivation and Goals
 • Use case: University campus of Masaryk University

• Problem: Automation data analysis

• Method: Automation data semantics and querying

• Results, Summary, Conclusions
Facility Management

• According to IFMA (International Facility management association): „a profession that encompasses multiple disciplines to ensure functionality of the built environment by integrating people, place, process and technology“

• FM ensures tasks, which are not part of organization’s „core business“
IS in Facility Management

BIM
- BIM = Building Information Model
- Built environment, locations and devices
- Generally static data

CAFM
- CAFM = Computer Aided Facility Management Software
- Space management, Furniture, Maintenance, Energy management
- Dynamic data (e.g. financial, HR), uses BIM data
- Analysis & Reporting

BMS
- BMS = Building Management System
- Remote monitoring and control of building automation systems
- Recent (present) and historical data from sensors and other devices
BIM – Building Information Model

• Digital representation of a building

Source: Authors
CAFM – Computer-Aided Facility Mgmt

- CAFM software supports:
 - Space management
 - Maintenance
 - Energy management
- Provides advanced analytical tools

Source: Archibus, Inc.
Smart buildings

• Devices in buildings connected to a network
 • Heaters
 • Air conditioning units (HVAC)
 • Lighting
 • Energy meters
 • ...

• Monitored and controlled remotely
Smart buildings – Approaches

Modern (Households & SOHO/IoT)
• „We have cheap computers, can we use them to control appliances?“
• Origins in ICT

Traditional (Large sites)
• „We have lot of devices in a building, can we facilitate the management?“
• Origins in civil engineering & electronics engineering
Smart buildings – Approaches

Households & SOHO/ IoT

- Examples:
 - Arduino
 - .NET Gadgeteer
 - Energomonitor
 - Nest/Google thermostat
- Relatively cheap

Large sites

- Technologies
 - Building Automation Systems
 - Building Management Systems
- Expensive
- Long device lifetime
- Compliance to standards
Smart buildings – Approaches

Households & SOHO/IoT

- Devices using:
 - Operating system
 - Wi-Fi
 - HTTP
 - Web services
 - Cloud
 - M2M, Internet of Things

- Controlled by
 - Web interface
 - Smart phones

Large sites

- Devices using
 - Microcontrollers
 - Serial bus (RS232, RS485), Ethernet, TCP/IP
 - Specialized automation protocols

- Controlled by
 - Dedicated desktop applications
 - Web interface
Smart buildings – Approaches

Households & SOHO/IoT

- ARM Cortex A8
- 40 MB flash

Large sites

- CPU 25 MHz
- 128 kB RAM
- 1 MB flash

Source: Google, Inc.

Source: Delta Controls, Inc.
Smart buildings – BAS & BMS

• **BAS** = Building Automation System
• **BMS** = Building Management System
• Used mostly at large sites
• Ensures automated operation of building technologies:
 • **HVAC**
 • **Lighting**
 • **Safety & Security systems (Fire alarm, Access control)**
 • **Elevators**
 • **Energy monitoring**
Smart buildings – BAS & BMS

- Remote monitoring and control
- Integration of different systems
- User interface
- Alarming
- Archiving
- Regulation algorithms
- Scheduling
- Cooperation
BMS – PLCs

- **PLC** = Programmable logical controller
- Specialized computer for automation
- Provides various types of input and outputs
 - **Analog inputs** – e.g. temperature, humidity, pressure sensors
 - **Analog output** – e.g. valve opening
 - **Digital (discrete) inputs** – e.g. motion sensor
 - **Digital (discrete) outputs** – e.g. fan speed, relay control
- Programmable by specialized tools & languages
BMS – PLCs

Source: OFM SUKB MU

Source: siemens.com
BMS – Structure

Source: Authors
BMS – UI

Source: OFM SUKB MU
BMS – UI

Source: OFM SUKB MU
Motivation – Use case

- **Goal:** Examining building operation *performance* and *efficiency* using BMS data
- **Use case:** BMS of Masaryk University (40 buildings, 150 000 data points)

Source: muni.cz
Motivation – Analytical capabilities

BMS
- Sensor data
- High detail
- Recent data
- Simple applications

CAFM
- Financial data
- Low detail
- Delayed data
- Complex applications

- How much does the electricity consumption differ across the campus?
- How much energy is consumed by air conditioning?
- What are the average room temperatures?
BMS vs. Big Data

- **Volume** does not apply
 - 150,000 data points, Up to 10GB of useful data/year
- **Velocity** does not apply
 - Polling frequency: minutes
 - Change of Value (e.g. 1°C)
- **Variety** does apply (partially)
 - Structured data
 - Undifferentiated data types (Temperature, Humidity, Setpoint, …)
- **Variability & Veracity** do not apply
 - Data are consistent, credible and of high quality
Problem – Complexity

• Application development tasks:
 • Data access (automation protocols, OLTP)
 • Data selection, grouping & aggregation
 • Analytical methods
 • User Interface
Problem – Unsuitable semantics

- Data points **identified by** network **address** in BMS
 - BACnet protocol: 25104.AI101
- Data point properties carry **limited semantics**:
 - Object type (Analog/Binary/..., Input/Output/Variable/...)
 - Engineering units
- **Missing relation** to the physical world:
 - Location
 - Source device
 - Measuring environment (air, water, ...)
 - ...
Aims & Methods – New semantics

• New approach to analysis of BMS data
 • Network **addresses are not used** as identifiers
 • Universal model relates **BMS** and **BIM** and also adds new information

![Diagram with nodes and connections]

- Network address (BMS)
- Location (BIM)
- Source device (BIM)
- Meaning (New)
- Purpose (New)
- Physical quantity
- Environment
- Time window
- Aggregation
Aims & Methods – Ontology

- New semantics of BMS data can be described by **Ontology language**
- **OWL** – Web Ontology Language (W3C)
 - Designed for **Semantic web & Linked Data**
 - Based on **RDF** (Resource Definition Framework)
 - „Subject-Predicate-Object“

[Image of W3C logo]
Aims & Methods – Existing ontologies

- **Upper** ontologies – describe general concepts across domains (not used in our use case)
- Semantic Sensor Network ontology – unsuitable
 - Uses upper ontology as a base
 - Complicated querying
 - Focuses on different concepts
 - SSN: Relation between observation and obtained value
 - BMS: Relation between source device and value, description of measured value
Aims & Methods – Ontology

Source: Muhammad Asfand-e-yar, FI MU
Aims & Methods – Ontology querying

- Ontology repositories can be queried using specialized query languages (SPARQL)

Source: Muhammad Asfand-e-yar, FI MU
Aims & Methods – Ontology tools

• **Protégé** – Open source ontology editor
• **Apache Jena** - Open Source ontology framework
 • OWL/RDF Java API
 • **SPARQL** engine
 • **TDB** - Native (noSQL) persistent **triplestore**
• **Fuseki** – standalone RESTful web server

Source: http://protegewiki.stanford.edu/
Aims & Methods – APIs

- Simplification of application development & integration
- Data access APIs
- Semantic API
 - Encapsulating OWL & SPARQL
 - Domain-specific operators – aggregation, grouping & filtering according to:
 - Location
 - Source device
 - Meaning
 - ...
 - Ready-to-use functions for frequent queries
Aims & Methods – Middleware layer

Source: Authors
Query examples

1. Semantic query
 Location: Campus Bohunice; Building A11
 Grouping: Per floor
 Measured value: Room temperature
 Source device: Temperature sensor
 Data type: Historical data
 Desired output: Network address

2. Semantic result
 N01: {11400.TL5, 11500.TL5, 11600.TL1}
 N02: {12100.TL5, 12300.TL3, 12400.TL5}
 N03: {12500.TL1, 12600.TL1, 12800.TL1}

3. Data query
 Data points: Semantic result data
 Aggregate: temporal AVG
 Period: 09/2014 – 1/2015
 Aggregation Window: 1 day

4. Data result
 N02: {...}
 N03: {...}
1. **Semantic query**
 - Data type: *Input; Output; User defined value*
 - Influenced value: *Room temperature*
 - Influenced location: *Room 231 at building UCB-A11*
 - Desired output:
 - *Source device (with Location); Network address; Data type; Meaning (quantity)*

2. **Semantic result**
 - *Pump in UCB-A11-1S05, 10200.AO1, Output, Pump mode (on/off)*
 - *Temperature sensor in UCB-A11-1S05, 10200.AI5, Input, Water temperature*
 - *Application controller in UCB-A11-1S07, 10000.AV4, User defined value, Setpoint temperature*

3. **Data query**
 - Data points: *Semantic result data*
 - Aggregate: *- (present value)*

4. **Data result**
 - *Pump in UCB-A11-1S05; ON*
 - *TS in UCB-A11-1S05, 76.5 °C*
 - *AC in UCB-A11-1S07, 22 °C*
Results

- Architecture design
- End-user applications
- Data access API
- Semantic model

Source: Authors, Petr Zvoníček, FI MU
Summary & Conclusion

• **Area:** Building operation analysis using data from automation systems

• **Aims:**
 - Provide new semantics to BMS data
 - Simplify development of analytical tools

• **Method:** Middleware layer
 - Semantic information – Integrating BMS and BIM
 - Data access

• **Evaluation:** Implementation of benchmarks defined in *EN 15 221: Facility Management*