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Introduction and Motivation

This work proposes the Unsupervised Method
for Ontology Population from Web Texts
(UMOPOW) that combines:
– web‐scale statistics,

– semantic metrics

– other heuristics

for evaluating confidence scores to be applied to
the specific task of Ontology Population (Oliveira
et al., 2012)
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The Proposed Approach
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• We use a set of domain‐independent linguistic
patterns proposed by Hearst (Hearst, 1992)

Ex.: Queries used to gather documents of the
Sport class

(1) Extraction of Candidate 
Instances



• The Confidence Score (ConfScore) of a
candidate instance as the weighted sum of
all constituent scores shown above
– PMI

– WordNet Similarity Score (WNS)

– Extra Patterns Score (EPS)

– Direct Matching Score (DMS)
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(2) Classification of Candidate 
Instances



• Typical noisy information found on the Web
can produce incorrect candidate instances

• The UMOPOW promotes as actual instances
only the best 10 candidate instances
classified by our confidence score
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(3) Ontology Population



For each instance i of a class C do {

1.Formulate a web query “C AND i” and gather
the first N documents

2.For each occurrence of i in the set of the
retrieved documents, extract both W words
before and after i

3.Apply a filter based on Part‐of‐Speech (POS) tags
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(4) Learning Pattern Step



4. Classify the best patterns according to the
confidence metric

where,
• p is a pattern in a set of pattern candidates P

• i is each instance in I

• Lsize is the number of distinct instances I
responsible to extract p
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(4) Learning Pattern Step



Experimental
Evaluation
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Experimental Evaluation

• Experimental Setup

Material Description:
• 7 linguistic patterns

• 700 snippets for each pattern

• Totalizing 4900 snippets

• Custom ontology with 15 classes: Mammal,
Amphibian, Reptile, Bird, Fish, Insect, City,
Country, River, Disease, Symptom, Movie,
Sport, TV Series, and University
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Experimental Evaluation

Evaluation Measure
Accuracy:

where:

• N is the total of candidate instances evaluated
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We determined 4 cut‐off points corresponding to 
the Top 10, 25, 50, 100 in the list of candidate 
results



Experimental Evaluation
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Experimental Evaluation
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• The best 5 learned linguistic pattern order by 
our Confidence Score (CS)



Conclusion 
and 

Future Work
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Conclusion and Future Work

• We have proposed an unsupervised method for
ontology population, the UMOPOW, which is based
on a confidence‐weighted metric for assessing
candidate instances extracted from the web.

• Future Work:
• Evaluating the impact of each measure and heuristic that

composed the Confidence‐weighted Metric

• Evaluate the impact on precision when the learning
module considers, at the same time, the initial and the
learned set of extraction patterns
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(1) Extraction of Candidate 
Instances
• The documents are preprocessed in order to:

– eliminate unnecessary elements. E.g. HTML tags

– match occurrences of the patterns into the
document content
• Ex. Sentences like “such cities as CANDIDATES” in which

CANDIDATES denotes a list of Noun Phrases (NP)

20



• In order to avoid invalid and repeated candidate
instances, the following filters are applied:

1. Stop word filtering

2. Redundant candidates

3. Semantic filtering

– 2 candidate instances can be syntactically different,
but semantically equivalent
• EX.: "USA" and "The United States of America”

• if two candidates are synonyms according to theWordNet,
they are considered equivalents and just one candidate is
kept
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(1) Extraction of Candidate 
Instances



1. Pointwise Mutual Information (PMI) (Etzioni et
al., 2004)

• It assesses the likelihood between the class and
the candidate instance using each extraction
pattern

• Queries are performed using a web search
engine
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(2) Classification of Candidate 
Instances



• PMI Scores for candidate instances of
Disease class
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Extraction Pattern Query Hits

candidate is a class “pneumonia is a disease” 115,000

class(s) such as candidates “diseases such as pneumonia and” 365,000

such class(s) as candidates “such diseases as pneumonia and” 21,400

candidates and other class(s) “pneumonia and other diseases
and”

447,000

candidates or other class(s) “pneumonia or other diseases and” 536,000

class(s) especially candidates “diseases especially pneumonia 
and”

6,980

class(s) including candidates “diseases including pneumonia 
and”

67,500

(2) Classification of Candidate 
Instances



• It is important the presence of the word "and",
either before or after a candidate instance in some
patterns (Geleijnse and Korst, 2006)

• Using it we try to avoid some misclassifications
faced in our previously work (Oliveira et al, 2012)

a) If the method had extracted the candidate instance
"Las" instead of "Las Vegas”

b) Candidate instances matching the pattern "NP
and/or NP" like "New York and California“
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(2) Classification of Candidate 
Instances



• Str‐INorm‐Thresh
• A variation of PMI that normalized the sum of

the hits(ci,c,p) by a value determined by sorting
the set of candidate instances by hits(ci) and
then selecting the hit count that appears at the
25th percentile (Count25)
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(2) Classification of Candidate 
Instances



2. WordNet Similarity
– Take into account the WordNet structure to produce a

numerical value for assessing the degree of the semantic
similarity between two concepts

We adopted two similarity measures:

• Lin (Lin, 1998): defines the similarity between two concepts
as the ratio of the shared information content to the
information content that separately describe each concept

• Wu and Palmer (Wu and Palmer, 1994): relies on finding the
most specific concept that subsumes both the concepts
under measurement.
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(2) Classification of Candidate 
Instances



3. Number of Extra Patterns
• If a candidate instance is extracted by many

extraction patterns, this gives a strong evidence
that this candidate instance is a valid instance for
the related class

• Extra Pattern Score (EPS) is the number of
extraction patterns that extracted a particular
candidate instance
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(2) Classification of Candidate 
Instances



4. Direct Matching
• Based on the idea of finding the label of the class
within the instance candidate (Monllaó, 2011)

• If they match, then the system assigns 1 as its
Direct Matching Score (DMS), or 0 otherwise

Example:

• Given the University class and the candidate instance,
University of London, then DMS = 1 is assigned to this
candidate
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(2) Classification of Candidate 
Instances
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